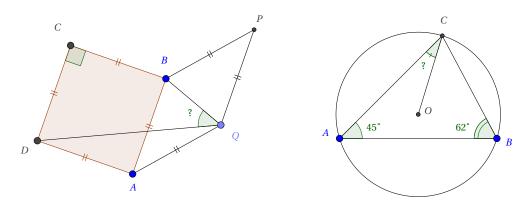
Angles inscrits

Problème 1. [Triangle inscrit dans un demi-cercle] Soit $\mathscr C$ un cercle de diamètre [AB], et M un autre point du cercle. Montrer que l'angle \widehat{AMB} est droit.

Réciproquement, montrer que si ABM est un triangle rectangle en M, alors M appartient au cercle de diamètre [AB].

Problème 2. Deux angles à trouver :



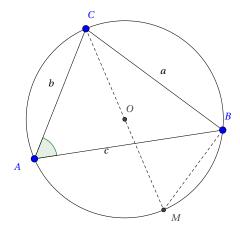
Problème 3. On place quatre points A, B, C et D sur un cercle \mathscr{C} (dans cet ordre). On note I, J, K et L les milieux des arcs \widehat{AB} , \widehat{BC} , \widehat{CD} et \widehat{DA} . Montrer que $(IK) \perp (JL)$.

Problème 4. [Loi des sinus] Soit ABC un triangle, dont on note a, b et c les côtés, et r le rayon du cercle circonscrit. La « loi des sinus » est l'énoncé suivant :

$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2r$$

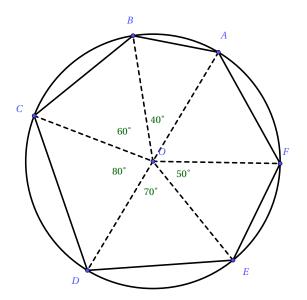
Démontrer ce théorème, en s'aidant de l'indication fournie par la figure ci-contre.

(La loi des sinus est un résultat très utile en géométrie. On reviendra sur ce théorème dans une prochaine feuille.)



Problème 5. Un quadrilatère convexe ABCD est inscrit dans un cercle de centre O. La diagonale [BD] est un diamètre, et la diagonale [AC] est égale au rayon. Calculer les angles du quadrilatère.

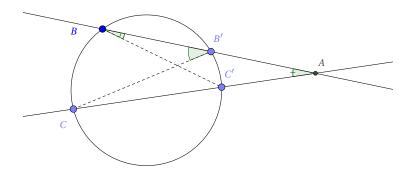
Problème 6. Sur un cercle, on porte des arcs consécutifs AB, BC, CD, DE et EF mesurant respectivement 40° , 60° , 80° , 70° et 50° . Calculer les angles aux sommets de l'hexagone (non régulier) ABCDEF. Quelle est la somme de tous ces angles? Existe-t-il une formule générale pour la somme des angles d'un polygone?



Problème 7. Dans cet exercice, on cherche à démontrer que les hauteurs d'un triangle sont concourantes en utilisant le théorème de l'angle inscrit.

Soient A' et B' les pieds des hauteurs issues de A et B, et B' leur point d'intersection. Montrer que $\widehat{AA'B'} = \widehat{ABB'}$. Que dire de $\widehat{CA'BB'}$? Terminer la preuve.

Problème 8. Deux sécantes (BB') et (CC') à un même cercle se coupent en un point extérieur A. Démontrer que l'angle \widehat{BAC} est égal à la différence des angles inscrits $\widehat{BB'C}$ et $\widehat{B'BC'}$.



Problème 9. [Ennéagone] Soit *ABCDEFGHI* un ennéagone régulier, c'est-à-dire un polygone (convexe) régulier à neuf côtés: tous les côtés ont la même longueur, et tous les angles au sommet sont égaux.

Que valent les angles aux sommets du polygone, en degrés?

Que vaut l'angle \widehat{ABH} ? Qu'en est-il des angles \widehat{ABI} , \widehat{ABG} , \widehat{ABF} etc?

Plus difficile : soit P l'intersection de (BH) et de (AD). Calculer la mesure de \widehat{DPC} .

(Commencer par déterminer le plus d'angles possibles, puis utiliser un des exercices précédents.)

