Introduction à la théorie des graphes

La feuille utilise le vocabulaire suivant (voir cours) : graphe, sommet, arête, sous-graphe, sous-graphe strict; degré d'un sommet, sommets et arêtes adjacents; boucle, arêtes multiples, graphe simple; chemin, chemin fermé, cycle; graphe connexe, composantes connexes; arbre.

Sauf mention spéciale, les graphes sont simples, sans arêtes multiples ni boucles. Tous les graphes ont un nombre fini de sommets et d'arêtes, et sont non vides.

Exercice 1. Montrer que la somme de tous les degrés de tous les sommets d'un graphe est un nombre pair. Que vaut ce nombre?

Exercice 2. Soit *G* un graphe avec un nombre impair de sommets. Montrer qu'il existe au moins un sommet de degré pair.

Exercice 3. [Lemme des poignées de main (Euler)] Montrer que dans une réunion de plusieurs personnes dont certaines se serrent la main, un nombre pair de personnes devra serrer un nombre impair de fois la main d'autres personnes.

Exercice 4. Montrer que dans un graphe ayant au moins deux sommets, il existe toujours au moins deux sommets de même degré.

Exercice 5. Soit *G* un graphe ayant *s* sommets et *a* arêtes. Montrer qu'il existe un sommet de degré au moins $\left\lfloor \frac{2a}{s} \right\rfloor$, et un sommet de degré au plus $\left\lceil \frac{2a}{s} \right\rceil$.

Chemins, cycles

Exercice 6. Soit $k \ge 2$ un entier et G un graphe tel que tous les sommets aient un degré supérieur ou égal à k. Montrer qu'il existe un cycle de longueur au moins k+1.

Exercice 7. [Arbres couvrants] Soit G un graphe et G' un sous-graphe. On considère les deux propriétés suivantes pour G':

- a) G' est un **arbre maximal** autrement dit il n'y a pas d'autre arbre inclus dans G contenant strictement G'.
- b) G' est un **sous-graphe connexe couvrant minimal**, autrement dit G' couvre tous les sommets de G, et il n'existe pas de sous-graphe strict connexe G'' de G' connexe et couvrant tous les sommets de G.
- 1. Montrer que les deux propriétés sont équivalentes. Les sous-graphes vérifiant ces propriétés sont des **arbres couvrants de** *G*.
- 2. Montrer qu'un tout graphe connexe possède au moins un arbre couvrant.

Remarque : un graphe a en général plusieurs arbres couvrants, à part si c'est un arbre.

Exercice 8. Montrer qu'un arbre à $n \ge 2$ sommets admet au moins un sommet de degré 1. En fait, montrer qu'il admet au moins deux sommets de degré 1.

Exercice 9. Soit $n \ge 1$ un entier et G un arbre à n sommets. Montrer que G a exactement n-1 arêtes.

Exercice 10. Montrer qu'un graphe connexe ayant n sommets a au moins n-1 arêtes, et que s'il en a exactement n-1 c'est un arbre.

Exercice 11. Un sommet séparateur d'un graphe connexe est un sommet qui, s'il est enlevé (ainsi que ses arêtes adjacentes), produit un graphe non connexe. Soit G un graphe connexe, et A, B deux sommets. On suppose qu'il n'existe pas deux chemins reliant A à B et disjoints sauf aux extrémités. Montrer qu'il existe au moins un sommet séparateur.

Exercice 12. [Distance et inégalité triangulaire] Dans un graphe (connexe), la **distance géodésique** (ou simplement **distance**) entre deux sommets et la longueur du plus court chemin entre les deux. Attention, ceci ne correspond pas à la distance entre deux sommets si on dessine le graphe dans le plan (cette distance pourrait varier suivant le dessin effectué). Soit *G* un graphe connexe et *A*, *B* et *C* des sommets. Montrer

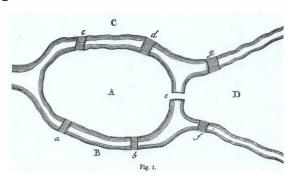
$$dist(A, C) \le dist(A, B) + dist(B, C)$$
.

Montrer également la « seconde inégalité triangulaire » :

$$dist(A, C) \ge |dist(A, B) - dist(B, C)|$$
.

Exercice 13. [\star] Un **appariement** sur un graphe G est un sous-graphe dont tous les sommets ont degré 1. Un appariement est **parfait** s'il a autant de sommets que G. Soit G un graphe avec 2n > 0 sommets, et dont tous les sommets ont degré $\geq n$. Montrer que G possède un appariement parfait.

Les ponts de Königsberg



L'illustration ci-dessus représente le plan de la ville de Königsberg (de nos jours, Kaliningrad) : la ville est traversée par plusieurs bras d'un fleuve et les quatre quartiers (A, B, C et D) sont reliés par sept ponts notés $a, b, \dots g$. On souhaite répondre à la question suivante :

Peut-on se promener dans la ville de sorte à traverser chaque pont exactement une fois?

Les deux exercices suivants permettent de répondre à cette question, en utilisant des graphes. **Attention, on autorise les arêtes multiples.**

Exercice 14. [Graphes eulériens, théorème d'Euler-Hierholzer] Un chemin **eulérien** dans un graphe est un chemin qui passe par chaque arête exactement une fois. Un graphe est **eulérien** s'il possède un chemin eulérien **fermé**. Montrer que c'est le cas si et seulement s'il est connexe et que tous ses sommets sont de degré pair.

Exercice 15. [Graphes semi-eulériens] Un graphe est dit **semi-eulérien** s'il possède un chemin eulérien (c'est-à-dire un chemin passant par chaque arête exactement une fois). Montrer qu'un graphe est semi-eulérien si et seulement si le nombre de ses sommets de degré impair est égal à 0, ou 2.

Que peut-on en déduire à propos des ponts de Königsberg?

Indications

Exercice 6. Construire un tel cycle en partant d'un point arbitraire.

Exercice 8. Considérer un chemin *élémentaire* (ne passant pas plus d'une fois par chaque sommet) et maximal pour cette propriété.